Skip to content

\(4+8++64=n=262n\)

|an=2n|||||| |-|-|-|-|-|-|-|-|-| |an:|2|4|8|16|32|64|128|256| |n:|1|2|3|4|5|6|7|8|

Is this property True or False in general?

n=1kcan=cn=1kan

\(n=142n=2n=14n=(21)+(22)+(23)+(24)=2(1+2+3+4)=2+4+6+8=20Don't simplify!These are equal by distributivity!\) These are equal by distributivity!

tldr

On the next 5 slides you will need to decide whether various properties of summation notation actually hold or are in fact false. To help with this, you should consider specific examples.

For instance, a sum can be generally written as: n=1kan

For the specific sequence $a_{n}=2n+1 and k=5, this sum would be n=152n+1=3+5+7+9+11

1

Is the following a True property of summation notation? Explain in a sentence, using specific examples. \(n=1kcan=cn=1kan\)

2

Is the following a True property of summation notation? Explain in a sentence, using specific examples. \(n=1kanbn=(n=1kan)(n=1kbn)\) \(n=14(n+1)(n+2)(23)+(34)+(45)+(56)(n=14n+1)(n=14n+2)(2+3+4+5)(3+4+5+6)\) False!

3

Is the following a True property of summation notation? Explain in a sentence, using specific examples. \(n=1kan+bn=(n=1kan)+(n=1kbn)\) \(n=14(n+1)+(n+2)(2+3)+(3+4)+(4+5)+(5+6)=(n=14n+1)+(n=14n+2)(2+3+4+5)+(3+4+5+6)\)