Skip to content

6.4 Second Fundamental Theorem of Calculus

abf(t)dt=F(b)F(a) where F(x)=f(x). axf(t)dt=f(x)F(a) ie: ddx(xxx)=ddx(x2)ddx(x)=2x1 ddx(axf(t)dt)=ddx(f(x)F(a)) ddx(axf(t)dt)=ddx(F(x))ddx(F(a)) ddx(axf(t)dt)=f(x) So axf(t)dt is an antiderivative of f

ie: ddx(3xt22tdt)=x2x ddx(πxsin(t2)cos(t)dt)=sin(x2)cos(x)

TLDR: ddx(axf(t)dt)=f(x)

Hokora's TLDR: its a function to find the antiderivative of literally any function

Let F(x)=0xet2dt ddx(F(x)x)=xddx(F(x))F(x)ddx(x)x2

"Low dee high minus high dee low square the denominator down below"

=xex2F(x)x2=ex20xet2x2

ddx(0x2et2dt)=ddx(F(x2)) =F(x2)ddx(x2) e(x2)2(2x) =2xex4

Recall limt0sin(t)t=1. f(t)={sintt,t01,t=0 Scientists call Si(x)=0xf(t)dt

Estimate: Si(0),Si(1),Si(2),Si(3). using Riemann sums with Δt=0.5 Si(0)=00sin(t)dtdt=0 Si(1)=01sinttdt= ! LHS: f(0)0.5+f(0.5)0.5=(10.5)+((sin0.50.5)0.5) ! RHS: f(0.5)0.5+f(1)0.5=((sin0.50.5)0.5)+((sin11)0.5) ! AVG: (0.97945+0.9002)/2=0.94

Si(2)=02sinttdt1.60 Si(3)=03sinttdt1.84

ddx(Si(x))=sinxx

7.1 Integration by Substitution

ddx(sin(x3))=cos(x3)derivative of outer function3x2derivative of inner function ddx(f(g(x))=f(g(x))g(x) ddx(f(u))=f(u)dudx dfdxdx=dfdududxdx f(x)=f(u)dudxdx=f(u)du f(g(x))g(x)dx=f(u)du=f(u)+C=f(g(x))+C let u=g(x) dudx=g(x) du=g(x)dx

u=x3 dudx=3x2 du=3x2dx cos=cos()(x3)u3x2dxdu =sin(u)+C =sin(x3)+C

Ex: x3x4+5dx

u=x4+5 du4=4x3dx4 14du=x3dx

=4(14du) =14u12du =14(u3232)+C =124x13u32+C =16(x4+5)32+C

Ex: ecosΘsinΘdΘ

u=cosΘ du=sinΘdΘ du=sinΘdΘ

=eu(du) =eudu =eu+C =ecosΘ+C

Ex: et1+etdt =etdt1+et=duu

u=1+et du=etdt

=1udu =ln|u|+C =ln|1+et|+C =ln(1+et)+C

ddt(ln(1+et))=11+et(1+et)=et1+et

Ex: tanΘdΘ=sinΘcosΘdΘ

u=sinΘdu=cosΘdΘ u=cosθ du=sinΘdΘ du=sinΘdΘ

=duu =1udu =ln|u|+C =ln|cosΘ|+C

Ex: excos3(ex)sin(ex)dx

u=ex du=exdx

=cos3(u)(cosu)3sin(u)du

w=cosu dw=sin(u)du dw=sin(u)du

=w3dw=w44+C=cos4u4+C=cos4(ex)4+C

Second way of doing it:

excos3(ex)sin(ex)dx

u=cos(ex) du=sin(ex)(ex)dx du=sin(ex)exdx

=u3(du)=u44+C =cos4(ex)4+C

Ex:02xex2dx

u=x2 du2=2xdx2 du2=xdx

=02eu =12x=0x=2eudu =12x=0x=2eudu =12eu|02=12e212e0=12e212

xex2dx

u=x2 du2=xdx

=12eudu =12eu+C =12ex2+C