Skip to content

Limits

The idea of continuity

roughly speaking, a function is continuous on an interval if its graph has no breaks jumps or holes in that interval.

Example
  • The function \(f(x)=3x^3-x^2+2x-1\) is continous on any interval
  • The function \(f(x)=1/x\) is not defined at \(x=0\). it is continous on any interval not contating 0

The Numerical Viewpoint: Continuity at a Point

In practical word, continuity of a function at a point is important because it means that small errors in the independent variable lead to small errors in the value of the function. Conversely, if a function is not continous at a point, a small error in input measurement can lead to an enourmous error in output.

Example
  • Supposed that \(f(x)=x^2\) and that we want to compute \(f(\pi)\). Knowing \(f\) is continous tells up that taking \(x=3.14\) should give a good approximation to \(f(\pi)\), and that we can get as accurate an approximation to \(f(\pi)\) as we want by using enough decimals of \(\pi\).

  • Investigate the continuity of \(f(x)=x^2\) at \(x=2\).

Values of \(x^2\) near \(x=2\) |\(x\)|\(1.9\)|\(1.99\)|\(1.999\)|\(2.001\)|\(2.01\)|\(2.1\)| |-|-|-|-|-|-|-| |\(x^2\)|\(3.61\)|\(3.96\)|\(3.996\)|\(4.004\)|\(4.04\)|\(4.41\)|

Whiteboard Question

\(\(f(x)=\frac{x^2-4}{x-2},x\ne2\)\)

\(\(\lim_{x\rightarrow2}\frac{x^2-4}{x-2}=?\)\)

\(x\) \(1\) \(1.5\) \(1.8\) \(1.9\) \(2\) \(2.1\) \(2.4\) \(2.5\) \(3\)
\(f(x)\) \(3\) \(3.5\) \(3.8\) \(3.9\) \(4\) \(4.1\) \(4.4\) \(4.5\) \(5\)
### \(\(\lim_{x\rightarrow2}\frac{x^2-4}{x-2}=4\)\)
### \(\(\lim_{x\rightarrow2}\frac{x^2-4}{x-2}=?,\textrm{ by direct solution }\frac{2^2-4}{2-2}=\frac{4-4}{0}=\frac{0}{0}\textrm{ Indeterminate}\)\)
### \(\(\lim_{x\rightarrow2}\frac{(x+2)(x-2)}{x-2}=\lim_{x\rightarrow2}x+2=\lim_{x\rightarrow2}2+2=4\)\)
Whiteboard Question

\(\(\lim_{h\rightarrow0}\frac{(3+h)^2-9}{h}\)\)

\(x\) \(-1\) \(-0.5\) \(-0.2\) \(-0.1\) \(0\) \(0.1\) \(0.2\) \(0.5\) \(1\)
\(f(x)\) \(5\) \(3.5\) \(3.8\) \(3.9\) \(4\) \(4.1\) \(4.4\) \(4.5\) \(5\)
### \(\(\lim_{h\rightarrow0}\frac{(3+h)^2-9}{h},\textrm{ by direct solution}\frac{(3+0)^2-9}{0}=\frac{3^2-9}{0}=\frac{9-9}{0}=\frac{0}{0}\)\)
##### \(\(\lim_{h\rightarrow0}\frac{(3+h)^2-9}{h}=\lim_{h\rightarrow0}\frac{9+6h+h^2-9}{h}=\lim_{h\rightarrow0}\frac{6h+h^2}{h}=\lim_{h\rightarrow0}\frac{h(6+h)}{h}=\lim_{h\rightarrow0}6+h=6+0=6\)\)
###### Section 2.1 Problem 2
Estimate the following limit
### \(\(\lim_{h\rightarrow0}\frac{(10+h)^3-1000}{h}\)\)
\(\(\lim_{h\rightarrow0}\frac{(10+h)^3-1000}{h}=\lim_{h\rightarrow0}\frac{(10+h)(10+h)(10+h)-1000}{h}=\lim_{h\rightarrow0}\frac{(100+20h+h^2)(10+h)-1000}{h}=\lim_{h\rightarrow0}\frac{h(6+h)}{h}=\lim_{h\rightarrow0}6+h=6+0=6\)\)