Limits¶
The idea of continuity¶
roughly speaking, a function is continuous on an interval if its graph has no breaks jumps or holes in that interval.
Example¶
- The function \(f(x)=3x^3-x^2+2x-1\) is continous on any interval
- The function \(f(x)=1/x\) is not defined at \(x=0\). it is continous on any interval not contating 0
The Numerical Viewpoint: Continuity at a Point¶
In practical word, continuity of a function at a point is important because it means that small errors in the independent variable lead to small errors in the value of the function. Conversely, if a function is not continous at a point, a small error in input measurement can lead to an enourmous error in output.
Example¶
-
Supposed that \(f(x)=x^2\) and that we want to compute \(f(\pi)\). Knowing \(f\) is continous tells up that taking \(x=3.14\) should give a good approximation to \(f(\pi)\), and that we can get as accurate an approximation to \(f(\pi)\) as we want by using enough decimals of \(\pi\).
-
Investigate the continuity of \(f(x)=x^2\) at \(x=2\).
Values of \(x^2\) near \(x=2\) |\(x\)|\(1.9\)|\(1.99\)|\(1.999\)|\(2.001\)|\(2.01\)|\(2.1\)| |-|-|-|-|-|-|-| |\(x^2\)|\(3.61\)|\(3.96\)|\(3.996\)|\(4.004\)|\(4.04\)|\(4.41\)|
Whiteboard Question¶
\(\(f(x)=\frac{x^2-4}{x-2},x\ne2\)\)¶
\(\(\lim_{x\rightarrow2}\frac{x^2-4}{x-2}=?\)\)¶
\(x\) | \(1\) | \(1.5\) | \(1.8\) | \(1.9\) | \(2\) | \(2.1\) | \(2.4\) | \(2.5\) | \(3\) |
---|---|---|---|---|---|---|---|---|---|
\(f(x)\) | \(3\) | \(3.5\) | \(3.8\) | \(3.9\) | \(4\) | \(4.1\) | \(4.4\) | \(4.5\) | \(5\) |
### \(\(\lim_{x\rightarrow2}\frac{x^2-4}{x-2}=4\)\) | |||||||||
### \(\(\lim_{x\rightarrow2}\frac{x^2-4}{x-2}=?,\textrm{ by direct solution }\frac{2^2-4}{2-2}=\frac{4-4}{0}=\frac{0}{0}\textrm{ Indeterminate}\)\) | |||||||||
### \(\(\lim_{x\rightarrow2}\frac{(x+2)(x-2)}{x-2}=\lim_{x\rightarrow2}x+2=\lim_{x\rightarrow2}2+2=4\)\) |
Whiteboard Question¶
\(\(\lim_{h\rightarrow0}\frac{(3+h)^2-9}{h}\)\)¶
\(x\) | \(-1\) | \(-0.5\) | \(-0.2\) | \(-0.1\) | \(0\) | \(0.1\) | \(0.2\) | \(0.5\) | \(1\) |
---|---|---|---|---|---|---|---|---|---|
\(f(x)\) | \(5\) | \(3.5\) | \(3.8\) | \(3.9\) | \(4\) | \(4.1\) | \(4.4\) | \(4.5\) | \(5\) |
### \(\(\lim_{h\rightarrow0}\frac{(3+h)^2-9}{h},\textrm{ by direct solution}\frac{(3+0)^2-9}{0}=\frac{3^2-9}{0}=\frac{9-9}{0}=\frac{0}{0}\)\) | |||||||||
##### \(\(\lim_{h\rightarrow0}\frac{(3+h)^2-9}{h}=\lim_{h\rightarrow0}\frac{9+6h+h^2-9}{h}=\lim_{h\rightarrow0}\frac{6h+h^2}{h}=\lim_{h\rightarrow0}\frac{h(6+h)}{h}=\lim_{h\rightarrow0}6+h=6+0=6\)\) | |||||||||
###### Section 2.1 Problem 2 | |||||||||
Estimate the following limit | |||||||||
### \(\(\lim_{h\rightarrow0}\frac{(10+h)^3-1000}{h}\)\) | |||||||||
\(\(\lim_{h\rightarrow0}\frac{(10+h)^3-1000}{h}=\lim_{h\rightarrow0}\frac{(10+h)(10+h)(10+h)-1000}{h}=\lim_{h\rightarrow0}\frac{(100+20h+h^2)(10+h)-1000}{h}=\lim_{h\rightarrow0}\frac{h(6+h)}{h}=\lim_{h\rightarrow0}6+h=6+0=6\)\) |