Skip to content

Section 1.4

P4:

Put the function \(P=25(2.4)^t\) in the form \(P_{0}e^{kt}\). When written in this form, you have: \(k=?\) \(P_0=?\) \(\(P=25(2.4)^t\)\) \(e^k=2.4\)
\(\ln e^k=\ln 2.4\) \(k\ln e=ln 2.4\) \(k(1)=\ln 2.4\) - \(k=0.88\) - \(P_0=25\)

P5:

Without a calculator or computer, match the function \(2^x,x^3,\ln{(x)}/\ln{(8)}\) and \(x^{1/2}\) to their graphs in the figure. Pasted image 20220901145206.png \(f(x)=?\) \(g(x)=?\) \(h(x)=?\) \(k(x)=?\)

$f(x)=x^{1/2}$
$g(x)=2^x$
$h(x)=\ln{(x)}/\ln{(8)}$
$k(x)=x^3$
Blackboard Q:

draw \(f(x)=(x+3)(x-1)(x-4)\) without any calculator

Pasted image 20220901150705.png

Quiz 2 Excempt Question

\(f(x)=(1+\frac{1}{x})^x\) |\(x\)|\(y\)| |-|-| |\(1\)|\(2\)| |\(2\)|\(1.5^2\)| |\(3\)|\(1.\overline{3}^3\)|

Pasted image 20220901152042.png

Compounding

\(A=p(1+\frac{R}{N})^{Nt}\) \(A=Pe^{rt}\)

ie: \(A=1000e^{(0.05)5}\)