Section 1.4¶
P4:¶
Put the function \(P=25(2.4)^t\) in the form \(P_{0}e^{kt}\). When written in this form, you have:
\(k=?\)
\(P_0=?\)
\(\(P=25(2.4)^t\)\)
\(e^k=2.4\)
\(\ln e^k=\ln 2.4\)
\(k\ln e=ln 2.4\)
\(k(1)=\ln 2.4\)
- \(k=0.88\)
- \(P_0=25\)
P5:¶
Without a calculator or computer, match the function \(2^x,x^3,\ln{(x)}/\ln{(8)}\) and \(x^{1/2}\) to their graphs in the figure. \(f(x)=?\) \(g(x)=?\) \(h(x)=?\) \(k(x)=?\)
$f(x)=x^{1/2}$
$g(x)=2^x$
$h(x)=\ln{(x)}/\ln{(8)}$
$k(x)=x^3$
Blackboard Q:¶
draw \(f(x)=(x+3)(x-1)(x-4)\) without any calculator
Quiz 2 Excempt Question¶
\(f(x)=(1+\frac{1}{x})^x\) |\(x\)|\(y\)| |-|-| |\(1\)|\(2\)| |\(2\)|\(1.5^2\)| |\(3\)|\(1.\overline{3}^3\)|
Compounding¶
\(A=p(1+\frac{R}{N})^{Nt}\) \(A=Pe^{rt}\)
ie: \(A=1000e^{(0.05)5}\)