
Chapter 8: Polymorphism

CSE 2010 - Week 12

What is Polymorphism?

Polymorphism: A mechanism in object-oriented programming that gives us the
ability to handle objects of different types at the same time. In C++ we do this by
implementing several versions of a function, each in separate classes.

○ Literal definition of polymorphism: having many forms.
○ This is different from function overloading or overriding, which depends on the parameters.

Polymorphism is sometimes easier to learn
by first looking at an example….

Clocks Example Program: A program that uses local clocks (base class) and travel clocks
(derived class).

Base Class: Clock

Derived Class: TravelClock

Test Program for Clock and TravelClock Classes

Output:

Notice that there is a lot of repetitive code when it
comes to displaying clock information.

Let’s make our code look nicer by sticking all of our
objects into a vector and using a loop to call the
functions repeatedly.

Storing derived objects with base objects

● The compiler will not give us any errors when we try to store a TravelClock into a Clock vector,
but we encounter problems with how the vector is allocating memory.
○ For each object, the vector only allocates space for one attribute, “military”.
○ For the TravelClock objects with additional attributes, the vector will “slice away” the

additional TravelClock attributes (“location”, “time_difference”)

Storing derived objects with base objects

● Using a vector of pointers, we can simply store the memory addresses of the objects stored in heap memory.

First example of polymorphism: a vector that stores different “forms” of a clock

● The pointers will all have the same size (size of a memory address), even though the objects they are pointing
to will vary in size.

● We can assign a pointer of type Clock* to point to TravelClock*, but we can’t have a TravelClock* point to a
Clock*

(The time_difference above should be 2 and 17 for Zacatecas
and Tokyo, respectively.)

What happens if we run this?

● Unfortunately, when we run the program we will get
some unexpected output.

● The get_location() and get_hours() functions for
the TravelClock objects were not called.

● Since the compiler sees the objects as pointers of
type Clock*, it makes a note to use Clock member
functions for those function calls (so it does what it
thinks it’s supposed to do).

● Notice that the value of the “is_military” data
member is set properly, but nothing else.

● What we want is for our program to be able to first
check the object type before calling the function,
and this needs to be done during run-time….how
do we do this?

Output:

virtual Functions

● Virtual functions are base class member functions whose behavior can be
overridden in derived classes.

● Virtual functions allow for overriding behavior even if there is no compile-time
information about the type of object invoking a function (such as with pointers
that point to objects in heap memory).

● Using the virtual keyword in the base class will automatically make all
functions in the derived class with the same name and parameters types virtual
functions as well.

● Whenever a virtual function is called, the exact function that is going to be
called will be determined at run-time.
○ This is referred to as Dynamic Binding, whereas Static Binding occurs for function calls

determined at compilation time.

Base class with virtual destructor and
member functions Derived class with virtual member functions

(not noted but will inherit from base class)

● When the compiler encounters a call to “get_location” or “get_hours”, it’s going to skip the binding and it will allow the object
type to be determined during run-time.

● Similarly when an object is deleted, it will check what type of object is being deleted to call the correct destructor.

Output:

After properly implementing polymorphism…we are all good now!

Inheritance and Polymorphism Review

● As we have seen in this example program, we can represent polymorphic
collections of different object types.

● Inheritance is used to express the commonality between objects.

● Polymorphism , such as what is implemented with virtual functions and vectors
of pointers, gives our programs a great deal of flexibility and extensibility.

● We can easily extend the number of derived classes of a base class and make
sure that the appropriate functions are called each time.

