
Chapter 8:
Inheritance

CSE 2010 - Week 12

Background
In object-oriented programming, classes are not used in isolation, but instead used in

relation to each other.

Consider the following classes:

● Animal

● Cat

The concept of an animal is a general one, while a cat is a specific type of animal. All

cats are animals, but not all animals are cats.

This is the concept behind inheritance.

Inheritance
● Inheritance in object-oriented programming derives a more specific concept from a

more general one.
● With inheritance, we have a base class and derived classes.
● Base Class:

○ A class that describes a general concept.
■ Person
■ Animal
■ Shape
■ Employee

● Derived Class:
○ A class that inherits from a base class and is a more specialized case.

■ Student
■ Cat
■ Circle
■ Manager

Unified Modeling Language (UML)
● To show the relationship between

inherited classes in C++, we can use the
Unified Modeling Language (UML).

● UML is a language that graphically
shows the relationship between
classes and objects.

● Classes are shown in rectangular
boxes, while the inheritance
relationship is shown by a solid line
ending in a hollow triangle that goes
from the specific class to the general
class.

UML Diagrams denoting inheritance
Bottom: Derived Classes
Top: Base Classes

Relationship between the base and derived class
● A specific concept must have the characteristics of the general concept, but it

can have more.

● In C++, we say that a derived class extends its base class, meaning the derived

class must have all of the data members and member functions of the base class,

but it can add to the list.

● There are 3 ways a derived class can inherit a base class:
○ Private inheritance

○ Protected inheritance

○ Public inheritance
● The default type of inheritance is private, but

private and protected aren’t really used.
● So in this class we will focus on public.
● If you want to learn more about private and

protected inheritance, read me.

https://isocpp.org/wiki/faq/private-inheritance

Consider the following classes…

● Person
○ A person has a name, date of birth (DOB),

and ID #.

● Student
○ A student inherits the data members and

member functions from Person.
○ Additionally, a student has a major and

GPA.

● See a more extended UML Diagram
to show the relationship between
these classes →

● The type of data members and member functions is shown
after the member names separated by a colon.

● The minus signs define the visibility of data members as
private; the plus signs define them as public.

Class Definitions

Syntax for a derived class definition:

class DerivedClassName:public BaseClassName
{
};

Base Class: Person Derived Class: Student

Student inherits all member functions and data members of the Person class.

Defining the Derived Class Constructors
● The constructor(s) of a derived class has two tasks:

○ Initialize the base object

○ Initialize its own data members

 Syntax:

 DerivedClassName::DerivedClassName(parameters)
:BaseClassName(parameters for base class),initialization list for remaining data members
{

}

Class Member Function Definitions
Base Class: Person Derived Class: Student

Main.cpp
makefile

Let’s run this to see what we get!

Overloaded vs Overridden Member Functions
● It is possible to have functions with the same name in the base class and its derived class(es).
● Overloaded Member Functions:

○ Functions with the same name, but different parameters.
○ They can be used in the same or different classes without being confused with each other.
○ Consider the following:

Person Class Student Class

void set(long newID); void set(string newMajor);

● A student object could use both functions, depending on what
the parameter datatype is, the compiler would use the
appropriate one.

● A person object could only use it’s own set() function.

● Overridden Member Functions:
○ Functions with the same name and same parameters.

○ Consider the following:

Person Class Student Class

void print(); void print();

● The compiler will default to use the function that
belongs to the class of the object that has invoked it.

● It is possible to delegate a specific function. For
example, if a Student member function wanted to call
the print function for person, we could write

○ Person::print()

Dependencies and Compositions

● Not all relationships between classes can be described as inheritance.
● Dependency:

○ Class A depends on Class B if Class A somehow uses Class B.
○ Class A depends on Class B if Class A cannot perform its complete task without class B.

■ Example:
● Last chapter we had an Employee class and a Department class.
● The Department class had two Employees: A receptionist and a secretary

○ For UML, dependency between classes is denoted with a dotted line ending with an arrow.

● Composition:
○ Describes the relationship between two classes where Class A has a Class B, and the

lifetime of the Class B object depends on Class A.
○ Class B cannot exist without Class A.
○ For UML, composition between classes is denoted with a solid line ending with a solid

diamond.

Registration System Example
● Lets design a simple registration system for a small department at a university.

● There will be some inheritance, dependency, and composition.

● We will use 6 classes:
○ Person: Contains a name and DOB
○ StudentSchedule: Contains a size (int) and course names (array of strings)
○ Student: Inherits the Person class. Additionally contains a schedule

(StudentSchedule)
○ CourseRoster: Contains a size (int) and a roster of students (array of strings)
○ Course: Contains a name(string), # of units (int), and a roster (CourseRoster)
○ Registrar: Uses the Student and Course objects

Registration System UML Diagram

Person Class

Student Schedule Class

Student Class

Note: When dealing with object pointers, we’ve been using the notation:
(*objectName).functionName(),
But we can also use: objectName->functionName().

Course Roster Class

Course Class

Registrar Class

Now that we’ve defined all our classes, lets see a program that uses them.

