
Chapter 7 - Pointers
CSE 2010
Week 11

Review - Defining Pointers
● Pointers are variables whose values are memory addresses.
● These memory addresses are the addresses of other variables or objects.

Declaring/Initializing pointers:

1. datatype* pointerName = &existing variable/object;

a. int year = 2021;
int* pYear = &year; //pYear = memory address of year

b. double salary = 50000.00;
double* pSalary = &salary;

c. Pet pet1(“Obi”, “cat”, ‘M’, 18.0);
Pet* p = &pet1;

Note: the pointer datatype needs to match the type of the variable whose address it
stores.

2. datatype* pointerName = NULL;

a. double* pPrice = NULL;

Note: Use this method when you need to declare a pointer but don’t yet know what it
needs to point to.

Review - Dereferencing Pointers
● We can use the dereference operator - * - to access or modify the value

stored at the memory address a pointer points to.

int year = 2021;
int* pYear = &year;

cout << “Value of year: “ << year << “\n”; // 2021
cout << “Value of &year: “ << &year << “\n”; // 0x28fe2A
cout << “Value of pYear: “ << pYear << “\n”; //0x28fe2A
cout << “Value of *pYear: “ << *pYear << “\n”; // 2021
cout << “Value of &pYear: “ << &pYear << “\n”; // 0x28fe63

Key thing to remember
is to pass the ADDRESS
of a value

Review - Pass by Pointer - Swapping Value

Review-
Using Pointers to
Access Arrays

Review - Pass by Pointer - Passing Arrays

Let’s learn some more about pointers!

Let’s talk about different types of memory…
Stack Memory

● Variables, global variables, objects, arrays, and
vectors we have created are all stored in stack
memory.

● Process of Stack Memory:
○ Stack memory is empty when a program starts.
○ As variables, objects, etc are defined in main(),

values are stored onto the stack.
○ When functions are called, variables within the

scope of the function are added to the stack.
○ Once the function ends, these variables are

removed from the stack.
○ Stack memory is emptied when the final return

statement is reached at the end of main().
● Stack memory is referred to as compile-time

memory, because stack values are determined
at compilation time.

● Very fast and efficient memory management

Heap Memory

● Stack memory is allocated during compilation
time, but we can also allocate memory during
run-time.

● There are times when we need to store very
LARGE objects or collections of objects.

● Or there are times when we need to create
objects that we want available globally, not to
be deleted at the end of its scope.

● C++ environments reserve a large storage
area called a heap to store objects created
during run-time.

● Objects in heap memory do not have names
associated with them, so we use pointers to
access them.

● Pointers themselves are stored in stack
memory, but heap memory can be used to
store the object it is pointing to.

Using heap memory - new and delete
● So how do we actually create objects in the heap during run-time?
● Objects in the heap are not automatically allocated or deleted, so it is our job to

explicitly do this.

● We use the new and delete operators.
○ new datatype - used to create memory in the heap for a single object
○ new datatype[size] - used to create memory in the heap for an array of objects
○ delete ptr- used to delete the single object using its pointer
○ delete[] ptr- used to delete allocated memory of an array in the heap.

● It is VERY IMPORTANT to make sure that for every object you create with new,
you delete that object before the program ends, or else that object will remain
in heap memory.
○ Failing to do this will result in memory leaks and may cause your computer to act all weird.

Creating Arrays with the new operator
● So far, we learned that the arrays we created are “static” arrays whose

size cannot be changed because it is determined at compilation time.
● Now we will learn how we can write a program that creates a variable-size

array each time the user runs the program (dynamic arrays).
● Syntax:

datatype* pointerName = NULL;

//determine size of the array

pointerName = new datatype[size];

………//program runs

delete[] pointerName;

Initializing Objects with new
● Say we have an Employee class, which creates object with a name and a salary.

Employee* tina = new Employee(“Tester, Tina”, 50000.00);
The above creates an Employee object using the overload constructor in HEAP
memory.

● We can access the object with *

cout << “Employee name: “ << (*tina).get_name();

● As with other objects in heap memory, you will eventually have to delete the
object.

delete tina;

Sharing Values Between Classes with Pointers

● Consider the following Employee
class.

● The Employee class represents an
Employee with a name and a salary.

Sharing Values Between Classes
with Pointers

● Consider the following
Department Class (CSE, Physics,
Math, etc)

● Each Department has a name,
and optionally a receptionist and
secretary (must have both).

● Receptionists and Secretaries are
of type Employee

Sharing Values Between Classes
with Pointers

● If a Department has a
receptionist and
secretary, then the
pointer(s) will be set to
the address of an already
existing Employee object.

● If a Department does not
have a receptionist and
secretary, the the
pointer(s) will be set to
NULL.

But couldn’t we make the Department class without pointers?
WITH pointers

 class Department {
 …
 private:
 string name;
 Employee* receptionist;
 Employee* secretary;
};

Objects that don’t have a receptionist and
secretary will not take up memory, since
those attributes will be set to NULL.

WITHOUT pointers

 class Department {
 …
 private:
 string name;
 bool has_receptionist;
 Employee receptionist;
 bool has_secretary;
 Employee secretary;
};

Objects that don’t have a receptionist and
secretary will still take up memory and you need
additional attributes.

In addition to using pointers within the class to share
values, we can use pointers to create shareable objects in

heap memory.

Sharing Objects - with Pointers
● Pointers enable us to properly share attributes between objects.

//declare an Employee pointer to initialize an Employee
//object in heap memory.
Employee* tina = new Employee(“Tester, Tina”, 50000.00);

//declare a Department object with no secretary/receptionist
Department qc(“Quality Control”);

//set tina as the department’s receptionist/secretary
qc.set_receptionist(tina);
qc.set_secretary(tina);

NULL

NULL

Sharing Objects - with Pointers
● Pointers enable us to properly share attributes between objects.

//declare an Employee pointer to initialize an Employee
//object in heap memory.
Employee* tina = new Employee(“Tester, Tina”, 50000.00);

//declare a Department object with no secretary/receptionist
Department qc(“Quality Control”);

//set tina as the department’s receptionist/secretary
qc.set_receptionist(tina);
qc.set_secretary(tina);

//update tina’s salary
(*tina).set_salary(55000.00);

delete tina;//once we’re done with program

What if we implemented this without Pointers…

Let’s look at a full example…. (zip folder with all files on Canvas)

Pointers Review
● In this chapter we learned how to use pointers to store memory

addresses.
● Pointers can be used to indirectly access values through their addresses.
● We can use the address (&) operator to obtain addresses of variables.
● We can use the dereference operator (*) to access values stored at

specific addresses.
● Pointers are helpful with the following:

○ Passing by Pointer
○ Accessing and modifying arrays
○ Using heap memory (new/delete)
○ Allows classes to have “optional attributes”
○ Sharing objects across classes.

● Pointers are also used in class inheritance…which we will see next week!

