
Chapter 6:
Vectors

CSE 2010 Week 9

Arrays walked so that Vectors could run
● Arrays are all fine and dandy, but one big limitation to them is that they cannot

change in size once they have been defined. There might be times when we

want to dynamically allocate memory and change the size of the container. This

is where vectors come in.

● Definition:
○ Vectors are dynamically allocated arrays provided by the C++ Standard Template Library (STL).

○ They are data structures that store an indexed sequence of elements of the same data type, and

can change in size.

● To use vectors, we must
○ #include <vector>

https://www.tutorialspoint.com/cplusplus/cpp_stl_tutorial.htm

Declaring and
Initializing Vectors

● vector<datatype> vectorName;
○ Creates an empty vector. No mem allocated.

Example: vector<int> x;

● vector<datatype> vectorName(n);
○ Creates a vector of n elements, all with a default value

Example: vector<int> y(3);

● vector<datatype> vectorName(n, default value);
○ Creates a vector of n elements, with specified value

Example: vector<int> z(4,100);

● vector<datatype> vectorName{element1, element2…element n};

○ Creates a vector with n elements

Example: vector<int> w{3,20,8};

Vector Functions
● The vector class includes many member functions that allow us to modify or get

information about a vector (similar to the string class).
● Syntax for using vector member functions:

vectorName.functionName(); //must invoke with an existing vector

● Adding/deleting elements:
○ push_back(n) : appends the value n to the end of a vector

 vector<int> x; //x is empty
 x.push_back(4); // x = 4
 x.push_back(6); // x = 4, 6

○ pop_back(); deletes the last element in a vector
 vector<int> y{5,6,7}; // y = 5,6,7
 y.pop_back(); // y = 5,6

● Vectors are considered last in, first out data structures. So when you add or delete elements, it
does so through the end of the vector.

Vector Functions
● Other helpful functions

● size(): returns the size of a vector

○ Because vectors are dynamically allocated and their size can change, you can add or delete as many elements

as you want. To find out the actual size of a vector you can use .size() (similar to .length() for string)

● clear(): clears the vector of all elements, setting its size to 0

● empty(): // returns true if the vector has a size of 0, returns false otherwise

Visit : http://www.cplusplus.com/reference/vector/vector/

For a full list of vector member functions and more information on vectors

http://www.cplusplus.com/reference/vector/vector/

Printing Vector Elements (printVector.cpp)

● Like arrays, we can access specific vector

elements with the [] operator by

providing an index #.

● We could use this method or a range

based for loop to print vector elements.

Output:

Modifying Vector Elements (changeVector.cpp)

Vectors in Functions
● Just like arrays, we can have vectors as parameters.
● Unlike arrays, vectors are passed by value. Meaning an identical copy of that vector is created in the scope of the

function.
● This can be very time and resource consuming, so whenever possible, pass your vectors by reference.

Example:

void fillVector(vector<int> & v);

If you don’t want to modify your vector, just add the const keyword

Example:

void printVector(const vector<int> & v);

Notice that for vectors, we don’t have to pass the size, since we always have access to the .size() function.

Let’s look some functions with vectors and also user input into a vector. (vectors.cpp)

