
Chapter 16:
Templates

CSE 2010
Week 14

Background
When writing a program, there may be a need to apply the same code to
different data types.

Suppose we need to write a program that finds the smallest between 2 values.
These values can vary in data type.

We can easily accomplish this with function overloading.

Example: Find the smaller of two values

Output:

● This works fine. Depending on the
data types that are provided in the
function call, the compiler will select
the appropriate function.

● But what if we also wanted this to
work for other data types like
strings, floats, etc?

● We would have to implement
additional functions for each data
type.

● Is there a better way?

Templates!
● We need a way to generalize our functions and programs, which will allow us to

easily reuse them in several special cases.
● We want to abstract away the differences, and keep the parts that are the same.

Literal definition of a template:
“A preset format for a document or file, used so that the format does not have to be
recreated each time it is used.”

Templates in C++:
A tool that allows a single function or class to work with a variety of data types.

● A template allows a function or a class definition to be parameterized by type,
instead of values.

● For this chapter we will learn about template functions & template classes.

Template Functions
Syntax of a template function :

template<typename type_var1, …,typename type_varn>

return_type function_name(parameters)

{
//statements

}

1. To define a template function, we first put the keyword template.
2. This is followed by a list of the type parameters, which is surrounded by angle

brackets.
○ typename type_var1, …,typename type_varn is used to list the number of

generic types your function will need.
3. The return type can be a generic type or regular data type.

Template Functions - Example

Syntax of a template function :

template<typename type_var1, …,typename type_varn>

return_type function_name(parameters)

{
//statements

}

Let’s run this and see what happens

Template Function Instantiation
Templates are efficient not just because of their ease in implementation, but
also in their execution.

The polymorphism of templates (defining the necessary nontemplate
functions) occurs during compilation time, not run time.

This means that when a program invoking a function template is compiled, the
compiler creates only as many versions of the function as needed by the
function calls.

This process is referred to as template instantiation.

Swapping Two Values

Output:

Common Error: Invalid Type Parameters
The arguments you call a function with need to be appropriate for the template
function in terms of amount and type.

template <typename T>
T smaller(T first, T smaller);

● Yes you can send any datatype to the function, BUT the datatype needs to
be the same for the arguments.

Error:
cout << smaller (23, 67.2) << “\n”;// error! Two different types for T

We can avoid this error if we explicitly convert the arguments during the call.

cout << smaller <double> (23, 67.2) << “\n”;// 23 will be sent as 23.0

Template Function Overloading
Just like regular function overloading, we can can overload a function template to
have several functions with the same name but different parameters.

Let’s look at an example! (smallest.cpp)

Printing array and vector
elements

We can overload a print template
function that will print either array or
vector elements.

Recall that when we use arrays, their
size is determined at compilation
time, so every array has a int size
associated with it (we will call this N).

Output:

Class Templates
We have learned in previous chapters that a class is a combination of data members and member functions.

Now consider that we need a class with the same data members and overall functionality, but with different
data types.

We can accomplish this with a class template! Syntax for function definitions:

template <typename T>
className<T>::className(T init):data(init)
{
}

template <typename T>
T className <T>::get()const
{

return data;
}

template <typename T>
void className <T>::set(T d)

data = d;
}

Syntax:

template <typename T>//you can have multiple generic types
class className
{

private:
T data;

public:
className(T init); //overload constructor
T get() const;//accessor
void set(T d);//mutator

};

Compilation of Class Templates
● Templates are not like ordinary classes in the sense that the compiler

doesn’t generate object code for a template or any of its members until
the template is instantiated with concrete types.

● Acceptable methods of compiling class templates vary depending on the
C++ compiler you use, but the following method should work across all
versions.

● The inclusion method
○ Define your template class in a .h file
○ Define your template class functions in a .cpp file
○ Include the .cpp file in whatever program file you are using the class in.
○ When you go to compile, you only need to compile the program file, not the class

template.

Let’s look at an example: Pair Class

