
Reminders/Due Dates
● Summer 2023 Internship Opportunity posted on Canvas.

● Lab 6 makeup due tonight.

● Lab 9 due Wednesday 11/30.

● Lab 10 and Homework 4 will be due next Monday December 5 by 11:59pm.

● Makeup submissions for Homework 3, Lab 7, and Lab 8 will open on 
Wednesday and will be due Friday December 9. 

● Wednesday 11/30 we will have a final exam review.

● Our final is next Wednesday December 7, 2022 from 5:30pm-7:30pm. We will be 
meeting in JB-358.



Please take 10 minutes to complete the SOTE for this course.
● Responses are completely anonymous and are not released until AFTER 

grades are posted. 
● Feedback really helps us know what is working or what needs 

improvement in the course. 
● You can access on Canvas > Any Course, SOTE (in bottom left menu).

QR Code:
● Landing Page URL: 

https://my.csusb.edu/default/classclimate_survey/index

https://my.csusb.edu/default/classclimate_survey/index


Chapter 16: 
Templates part 2

CSE 2010
Week 15



Templates Review
Templates in C++: 
A tool that allows a single function or class to work with a variety of data types. 

● A template allows a function or a class definition to be parameterized by type, instead of values. 
● For this chapter we will learn about template functions & template classes.

Syntax of a template function :

template<typename type_var1, …,typename type_varn>

return_type function_name(parameters)

{
//statements

} 

● typename type_var1, …,typename type_varn is used to list the number of 
generic types your function will need.  Use a different letter for each different type.

● The return type can be a generic type or regular data type.     



Example: Finding the smaller of two values (without/with templates)

Output: 

Output: 



Class Templates
We have learned in previous chapters that a class is a combination of data members and member functions. 

Now consider that we need a class with the same data members and overall functionality, but with different 
data types. 

We can accomplish this with a class template! Syntax for function definitions:

template <typename T>
className<T>::className(T init):data(init)
{
}

template <typename T>
T className <T>::get()const
{

return data;
}

template <typename T>
void className <T>::set(T d)

data = d;
}

Syntax:

template <typename T>//you can have multiple generic types
class className
{

private:
T data;

public:
className(T init); //overload constructor
T get() const;//accessor
void set(T d);//mutator

};



Compilation of Class Templates
● Templates are not like ordinary classes in the sense that the compiler 

doesn’t generate object code for a template or any of its members until 
the template is instantiated with concrete types.

● Acceptable methods of compiling class templates vary depending on the 
C++ compiler you use, but the following method should work across all 
versions.

● The inclusion method
○ Define your template class in a .h file
○ Define your template class functions in a .cpp file
○ Include the .cpp file in whatever program file you are using the class in. 
○ When you go to compile, you only need to compile the program file, not the class 

template. 



Pair Class
Program that uses the Pair class template

Compilation and output



Data Structures
● Data structures in programming are methods in which to store data in 

efficient and easy to access ways. 
● Depending on how you need to store and access data, you have different 

data structures to choose from. 
● A popular data structure that we have been using are vectors, which is 

part of the C++ Standard Template Library (STL). 
● The C++ STL is a powerful set of template classes to provide 

general-purpose classes and functions with templates that implement 
commonly used data structures and algorithms.

● Let’s try out a simple approach at implementing one of these data 
structures.



Stacks (Data Structure)

Stacks: A data structure in which the last 
item pushed into the stack is the first item 
that will be popped from the stack.

● Last in, first out (LIFO)

Typical operations for stacks:
● Push (add an item to top)
● Pop (delete item from top)
● Peek/Top (See item at top without 

deleting)



Class Template for a 
Stack (Stack.h)

● We will only need one generic 
type here, since a data 
structure should only hold 
one type.

● But by using templates it can 
hold any type!

● To simulate a stack, we use an 
array of type T, but as far as 
accessing/manipulating it, we 
limit the member functions to 
pop(), push(), and top(). 

● empty() and size() are just 
extra accessor functions.

Let’s implement the member 
functions!



Class Template for a stack - Member Functions  (Stack.cpp)



Stack_main.cpp

Output:



Class Templates for an 
Array (Array.h)

● Create a template class Array 
that can handle an array of 
objects of any type and any 
size in the heap. 

● Define an add member 
function to add elements to 
the end of the array. 

● Define a print function to print 
all elements in the array.



Array.cpp

Let’s write a program that 
uses this class!



Templates Review
● Templates in C++: A tool that allows a single function or class to work with 

a variety of data types. 
○ This saves us from having to overload our functions with different datatypes.

● A template allows a function or a class definition to be parameterized by 
type, instead of values. 

● We can overload template functions.
● Class templates allow us to design generic classes that accept different 

data types and objects. 



And with that…we have covered everything you need to know for CSE 2010!

Let’s look at the Student Learning Outcomes 
we looked at in Week 1 in the syllabus


