
Chapter 10: Recursion
CSE 2010 Week 14

Code and Figures from : “C++ programming: an object-oriented approach” - Forouzan, Behrouz A, Gilberg, Richard, 2020.



What is recursion..
● Recursion is a powerful programming technique that allows us to break 

up complex computational problems into smaller, more simple ones.
● Recursion even allows us to implement a solution in a way that mirrors 

our natural (human) way of thinking about a problem.
● We can accomplish recursion by implementing functions that call 

themselves to complete a task.
There are 2 key requirements to make sure that our recursive functions are successful:

1. Every recursive call must simplify the computation in some way (use smaller values 
with each call).

2. There must be special cases to handle the simplest computations directly.
○ Each recursive function has a general case and base case. 
○ A base case is the case that will terminate the recursion, while a general case is related to 

calls that do something and continue the recursion.



Fibonacci Numbers
The Fibonacci sequence is a sequence of numbers in which each number is 
the sum of the previous two numbers. 

The first 10 terms of a sequence are:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55

The Fibonacci numbers problem has two base cases and a general case

Base Case: F(0) = 0 &  F(1) = 1

General Case: F(n) = F(n-1) + F(n-2)



Recursive Implementation 
to find the nth Fibonacci #
The Fibonacci numbers 
problem has two base cases 
and a general case

Base Case: F(0) = 0 &  F(1) = 1

General Case: F(n) = F(n-1) + 
F(n-2)

Output



Recursive Trace



Let’s compare the recursive and iterative methods for 
finding fibonacci numbers



Fibonacci - Time and Space Complexity Comparison
Recursive:

● Time complexity: O(2^n) or exponential
● Space complexity: O(n)

Iterative:

● Time complexity: O(n) 
● Space complexity: O(1) or constant



Greatest Common Divisor (GCD)
One function often needed in mathematics and computer science is one to 
find the greatest common divisor (GCD) of two positive integers.

Finding the GCD of two positive integers means finding the greatest integer 
that evenly divides into both integers. 

Two positive integers may have many common divisors, but only one GCD.

Example: 12 & 140

Divisors of 12: 1, 2, 3, 4, 6, 12
Divisors of 140: 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140

GCD(12,140) = 4



Euclidean Algorithm for GCD
Thankfully this pretty smart guy named Euclid came up with a recursive 
algorithm to easily find the GCD of two positive integers.

Given two positive integers, A & B, the Euclidean Algorithm for finding 
GCD(A,B) is as follows: 

● If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.  
● Otherwise, write A in quotient remainder form (A = B * Q + R), and solve 

for R. 
● We can then find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = 

GCD(B,R)



Recursive 
Implementation of 
Euclidean Algorithm for 
GCD

Base Case:

● If B = 0 then 
GCD(A,B)=A

General Case:

● Calculate R = A%B
● Find GCD(B,R)

Output:

Euclid 
judging 
our 
recursive 
function



Palindrome Checker
A string is considered a palindrome if it reads the same forward and backward.

Examples: rotor, racecar, “Go hang a salami I’m a lasagna hog”

We want to write a function that checks whether a string is a palindrome. If it is, it 
returns true, if it’s not, it returns false.

Let’s think of how we can come up with the base and general cases.



Palindrome Checker - General case
Remember that the purpose of recursion is to simplify the problem with each function call, 
so how can we simplify a string to check if it’s a palindrome?

Example: rotor

1. Remove the first character: otor
2. Remove the last character: roto
3. Remove both the first and last character: oto
4. Remove a character from the middle: roor
5. Cut the string into two halves: rot or

Which of these methods best follows our natural way of thinking checking whether a string 
is a palindrome?

● #3, so this will be our general case



Palindrome Checker - Base case(s)
Our base case lets us know when to stop the recursion. Let’s think of what 
conditions we will have met to determine whether the string is a palindrome 
or not once we have simplified the string enough with the general case.

The simplest strings for the palindrome test:

1. Strings with two characters - they should be equal
2. Strings with a single character - is a palindrome
3. The empty string - is a palindrome

These will be our base cases. 



Recursive Implementation 
to check if a string is a 
palindrome
Base Case: 

1. if(length <=1), return true
2. Check if first and last char are the 

same.

General Case: 

● Split into smaller substring removing first 
and last characters

Output:



Recursive Trace



Recursive Sort & Search Algorithms
Sorting and searching through a list of elements is such a common task, that computer scientists 
have come up with several efficient algorithms to accomplish this. 

For this class, we’ll introduce some of the most popular ones.

● Quick Sort
● Merge Sort
● Binary Search

All 3 of these algorithms are examples of the “divide and conquer” approach of problem solving. 

Divide and conquer algorithms accomplish their task by recursively breaking down a problem into 
two or more subproblems, until a solution to each subproblem is solved. Then, the solutions are all 
combined to give a solution to the original problem. 



Quick Sort Algorithm
Given an array, A, of n elements : A[0...n-1]

● If array/subarray only has <=1 element, stop function (return)
● Else

○ Divide:
■ Pick one element in the array to use as a pivot.
■ Partition the elements into two sub-arrays 

● Elements less than or equal to pivot 
● Elements greater than pivot 
● The elements don’t have to be in order in the subarrays, they just have to be in 

the right subarray.
● This is all done within the original array.

○ Conquer:
■ Recursively call Quicksort on the two sub-arrays



Quick Sort - Partitioning
You can choose whichever element you want to be your pivot, but for this example we will choose 
the last element in the array to be our pivot value. 

Given this pivot, our partitioning algorithm will rearrange an array around the pivot so that all 
elements larger than the pivot move after it and all elements smaller than pivot move before it.  

Prototype for our partition function: int partition(int arr[], int start, int end)

Steps in our partition algorithm:
1. Initialize pivot to last element.
2. Initialize a temp variable to start index .
3. Initialize a variable i to traverse the array 
4. Traverse the array while i < end

■ If we encounter an element at arr[temp] that is <= pivot value, swap elements
● This will ensure that all elements smaller than pivot value are to the left.
● Increase temp variable.

5. After traversal, the temp variable will be in the correct position of the pivot.
6. Swap the element at arr[pivot]  with arr[temp variable]
7. Return the index of pivot



Partitioning 
Steps in our partition algorithm:

1. Initialize pivot to last element.
2. Initialize a temp variable to start index .
3. Initialize a variable i to traverse the array 
4. Traverse the array while i < end

■ If we encounter an element at 
arr[temp] that is <= pivot value, 
swap elements

● This will ensure that all 
elements smaller than 
pivot value are to the 
left.

● Increase temp variable.
5. After traversal, the temp variable will be in the 

correct position of the pivot.
6. Swap the element at arr[pivot]  with arr[temp 

variable]
7. Return the index of pivot

Let’s look at a walkthrough of it!

Does this really work?

https://www.youtube.com/watch?v=PgBzjlCcFvc


After Partitioning….
● Our partition() function is going to return the index of the pivot to us (p)
● All elements to the left of the pivot will be smaller than the pivot. 
● All elements to the right of the pivot will be greater than or equal to the 

pivot.
● Therefore, we can now recursively call Quicksort with our subarrays:

quickSort(arr,beg,pivot-1);
quickSort(arr,pivot+1,end);



Recursive Implementation 
of Quicksort Algorithm
Given an array, A, of n elements : A[0...n-1]

● If array/subarray only has <=1 
element, stop function (return)

● Else
○ Divide:

■ Pick one element in the array 
to use as a pivot.

■ Partition the elements into 
two sub-arrays 

● Elements less than 
or equal to pivot 

● Elements greater 
than pivot 

● The elements don’t 
have to be in order 
in the subarrays, 
they just have to be 
in the right 
subarray.

○ Conquer:
■ Recursively call Quicksort on 

the two sub-arrays

Output:



Merge Sort Algorithm
The basic idea behind merge sort is to continuously divide a vector of elements into smaller and smaller subvectors, sorting 
each half and merging them back together.

Given a vector, V, of n elements : V[0...n-1]

● If the vector has fewer than two elements, return.
● Else

○ Divide:
■ Divide the vector subvectors at the midpoint.

○ Conquer:
■ Recursively call mergeSort on each of the subvectors.

○ Combine:
■ Merge the two “sorted” subvectors back into a single sorted vector by taking a new element from either the first or 

second subvector and choosing the smaller of the elements each time. 

Unlike Quicksort where the divide step does a lot of work, for Merge Sort, the combine step does all the heavy lifting. 

Note: Quick Sort does not have a “combine” step because everything is done in place. Merge sort utilizes temporary vectors. 



Merging
The MVP of Merge Sort is the Merging function, which accepts a vector of the elements to merge, the 
beginning index first subvector, the end of the first subvector, and the end of the second subvector.

 Steps in our Merging Algorithm:

1. Determine the size of the range to be merged and create a temporary vector to hold the 
merged subvector elements.

2. Determine beginning indices of the first and second subvector
3. While the indices are not past their ranges, move smaller element of both subvectors into the 

temporary vector.
4. Once one vector’s elements have all been copied, copy the remaining elements into the 

temporary vector.
5. Finally, copy the sorted elements of the temporary vector into the original vector.



Merging
 Steps in our Merging Algorithm:

1. Determine the size of the range to be 
merged and create a temporary 
vector to hold the merged subvector 
elements.

2. Determine beginning indices of the 
first and second subvector.

3. While the indices are not past their 
ranges, move smaller element of both 
subvectors into the temporary vector.

4. Once one vector’s elements have all 
been copied, copy the remaining 
elements into the temporary vector.

5. Finally, copy the sorted elements of 
the temporary vector into the original 
vector.



Merging
 Steps in our Merging Algorithm:

1. Determine the size of the range to be 
merged and create a temporary 
vector to hold the merged subvector 
elements.

2. Determine beginning indices of the 
first and second subvector.

3. While the indices are not past their 
ranges, move smaller element of both 
subvectors into the temporary vector.

4. Once one vector’s elements have all 
been copied, copy the remaining 
elements into the temporary vector.

5. Finally, copy the sorted elements of 
the temporary vector into the original 
vector. https://commons.wikimedia.org/wiki/File:Merge_sort_algorithm_diagram.svg



Recursive Implementation 
of Merge Sort Algorithm
Given a vector, V, of n elements : V[0...n-1]

● If the vector has fewer than two 
elements, return.

● Else
○ Divide:

■ Divide the vector 
subvectors at the 
midpoint.

○ Conquer:
■ Recursively call mergeSort 

on each of the subvectors.
○ Combine:

■ Merge the two “sorted” 
subvectors back into a 
single sorted vector by 
taking a new element 
from either the first or 
second subvector and 
choosing the smaller of 
the elements each time. 

Output:



Just an FYI: Time Complexity of Sorting and Searching Algorithms

https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-complexities-cheat-sheet/



Binary Search (again)

In Chapter 6, we saw how to implement the Binary Search algorithm on a vector or array. 

We learned that Binary Search is WAY faster than Linear Search, and when the number of 
elements in a container is large enough, and you need to complete multiple searches, it is 
much more efficient to sort the container (you can use Quick Sort or Merge Sort), and then 
apply Binary Search!

We learned how to do it iteratively, now lets see how we can do it recursively. 



Binary Search - Recursive Algorithm
Algorithm:

Given an array, A, of n elements : A[0...n-1]

1. Determine the beginning and end of the 
search interval.

2. If there is no search interval, return -1 
(value not in array)

3. Else
○ Calculate the middle point of search interval.
○ If middle element = value we are searching for, 

return index.
○ If value > middle element, search continues in 

right half of array.
○ If value < middle element, search continues in 

left half of array.
4. Recursively send the next search interval. 



Recursive Implementation 
of Binary Search Algorithm
Given an array, A, of n elements : 
A[0...n-1]

1. Determine the beginning and 
end of the search interval.

2. If there is not search interval, 
return -1 (value not in array)

3. Else
○ Calculate the middle point of 

search interval.
○ If middle element = value we 

are searching for, return 
index.

○ If value > middle element, 
search continues in right half 
of array.

○ If value < middle element, 
search continues in left half of 
array.

4. Recursively send the next 
search interval. 



So….what is better: recursion or iteration?



Both...sorta
The efficiency of the method used depends on lots of things: the algorithm, the programming language, the compiler, etc. 

Everything that is implemented recursively can be implemented iteratively, BUT it might not be as “elegant” or easily 
understood.

Recursion generally uses more memory and takes longer since it continuously making calls to memory. 

Examples of algorithms where iteration is more efficient than recursion:

● Fibonacci Numbers
● Factorial Calculation

But many times, the recursive and iterative methods are very similar in performance.

In conclusion: 

● Use whichever method makes most sense to YOU. 
● Recursion is strongly related to mathematical induction, which is used in proving the time complexity of algorithms 

(Remember this in CSE 4310).
● “To iterate is human, to recurse is divine” - L. Peter Deutsch (Computer Scientist)


