
Chapter 10: Recursion
CSE 2010 Week 14

Code and Figures from : “C++ programming: an object-oriented approach” - Forouzan, Behrouz A, Gilberg, Richard, 2020.

What is recursion..
● Recursion is a powerful programming technique that allows us to break

up complex computational problems into smaller, more simple ones.
● Recursion even allows us to implement a solution in a way that mirrors

our natural (human) way of thinking about a problem.
● We can accomplish recursion by implementing functions that call

themselves to complete a task.
There are 2 key requirements to make sure that our recursive functions are successful:

1. Every recursive call must simplify the computation in some way (use smaller values
with each call).

2. There must be special cases to handle the simplest computations directly.
○ Each recursive function has a general case and base case.
○ A base case is the case that will terminate the recursion, while a general case is related to

calls that do something and continue the recursion.

Fibonacci Numbers
The Fibonacci sequence is a sequence of numbers in which each number is
the sum of the previous two numbers.

The first 10 terms of a sequence are:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55

The Fibonacci numbers problem has two base cases and a general case

Base Case: F(0) = 0 & F(1) = 1

General Case: F(n) = F(n-1) + F(n-2)

Recursive Implementation
to find the nth Fibonacci #
The Fibonacci numbers
problem has two base cases
and a general case

Base Case: F(0) = 0 & F(1) = 1

General Case: F(n) = F(n-1) +
F(n-2)

Output

Recursive Trace

Let’s compare the recursive and iterative methods for
finding fibonacci numbers

Fibonacci - Time and Space Complexity Comparison
Recursive:

● Time complexity: O(2^n) or exponential
● Space complexity: O(n)

Iterative:

● Time complexity: O(n)
● Space complexity: O(1) or constant

Greatest Common Divisor (GCD)
One function often needed in mathematics and computer science is one to
find the greatest common divisor (GCD) of two positive integers.

Finding the GCD of two positive integers means finding the greatest integer
that evenly divides into both integers.

Two positive integers may have many common divisors, but only one GCD.

Example: 12 & 140

Divisors of 12: 1, 2, 3, 4, 6, 12
Divisors of 140: 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140

GCD(12,140) = 4

Euclidean Algorithm for GCD
Thankfully this pretty smart guy named Euclid came up with a recursive
algorithm to easily find the GCD of two positive integers.

Given two positive integers, A & B, the Euclidean Algorithm for finding
GCD(A,B) is as follows:

● If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.
● Otherwise, write A in quotient remainder form (A = B * Q + R), and solve

for R.
● We can then find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) =

GCD(B,R)

Recursive
Implementation of
Euclidean Algorithm for
GCD

Base Case:

● If B = 0 then
GCD(A,B)=A

General Case:

● Calculate R = A%B
● Find GCD(B,R)

Output:

Euclid
judging
our
recursive
function

Palindrome Checker
A string is considered a palindrome if it reads the same forward and backward.

Examples: rotor, racecar, “Go hang a salami I’m a lasagna hog”

We want to write a function that checks whether a string is a palindrome. If it is, it
returns true, if it’s not, it returns false.

Let’s think of how we can come up with the base and general cases.

Palindrome Checker - General case
Remember that the purpose of recursion is to simplify the problem with each function call,
so how can we simplify a string to check if it’s a palindrome?

Example: rotor

1. Remove the first character: otor
2. Remove the last character: roto
3. Remove both the first and last character: oto
4. Remove a character from the middle: roor
5. Cut the string into two halves: rot or

Which of these methods best follows our natural way of thinking checking whether a string
is a palindrome?

● #3, so this will be our general case

Palindrome Checker - Base case(s)
Our base case lets us know when to stop the recursion. Let’s think of what
conditions we will have met to determine whether the string is a palindrome
or not once we have simplified the string enough with the general case.

The simplest strings for the palindrome test:

1. Strings with two characters - they should be equal
2. Strings with a single character - is a palindrome
3. The empty string - is a palindrome

These will be our base cases.

Recursive Implementation
to check if a string is a
palindrome
Base Case:

1. if(length <=1), return true
2. Check if first and last char are the

same.

General Case:

● Split into smaller substring removing first
and last characters

Output:

Recursive Trace

Recursive Sort & Search Algorithms
Sorting and searching through a list of elements is such a common task, that computer scientists
have come up with several efficient algorithms to accomplish this.

For this class, we’ll introduce some of the most popular ones.

● Quick Sort
● Merge Sort
● Binary Search

All 3 of these algorithms are examples of the “divide and conquer” approach of problem solving.

Divide and conquer algorithms accomplish their task by recursively breaking down a problem into
two or more subproblems, until a solution to each subproblem is solved. Then, the solutions are all
combined to give a solution to the original problem.

Quick Sort Algorithm
Given an array, A, of n elements : A[0...n-1]

● If array/subarray only has <=1 element, stop function (return)
● Else

○ Divide:
■ Pick one element in the array to use as a pivot.
■ Partition the elements into two sub-arrays

● Elements less than or equal to pivot
● Elements greater than pivot
● The elements don’t have to be in order in the subarrays, they just have to be in

the right subarray.
● This is all done within the original array.

○ Conquer:
■ Recursively call Quicksort on the two sub-arrays

Quick Sort - Partitioning
You can choose whichever element you want to be your pivot, but for this example we will choose
the last element in the array to be our pivot value.

Given this pivot, our partitioning algorithm will rearrange an array around the pivot so that all
elements larger than the pivot move after it and all elements smaller than pivot move before it.

Prototype for our partition function: int partition(int arr[], int start, int end)

Steps in our partition algorithm:
1. Initialize pivot to last element.
2. Initialize a temp variable to start index .
3. Initialize a variable i to traverse the array
4. Traverse the array while i < end

■ If we encounter an element at arr[temp] that is <= pivot value, swap elements
● This will ensure that all elements smaller than pivot value are to the left.
● Increase temp variable.

5. After traversal, the temp variable will be in the correct position of the pivot.
6. Swap the element at arr[pivot] with arr[temp variable]
7. Return the index of pivot

Partitioning
Steps in our partition algorithm:

1. Initialize pivot to last element.
2. Initialize a temp variable to start index .
3. Initialize a variable i to traverse the array
4. Traverse the array while i < end

■ If we encounter an element at
arr[temp] that is <= pivot value,
swap elements

● This will ensure that all
elements smaller than
pivot value are to the
left.

● Increase temp variable.
5. After traversal, the temp variable will be in the

correct position of the pivot.
6. Swap the element at arr[pivot] with arr[temp

variable]
7. Return the index of pivot

Let’s look at a walkthrough of it!

Does this really work?

https://www.youtube.com/watch?v=PgBzjlCcFvc

After Partitioning….
● Our partition() function is going to return the index of the pivot to us (p)
● All elements to the left of the pivot will be smaller than the pivot.
● All elements to the right of the pivot will be greater than or equal to the

pivot.
● Therefore, we can now recursively call Quicksort with our subarrays:

quickSort(arr,beg,pivot-1);
quickSort(arr,pivot+1,end);

Recursive Implementation
of Quicksort Algorithm
Given an array, A, of n elements : A[0...n-1]

● If array/subarray only has <=1
element, stop function (return)

● Else
○ Divide:

■ Pick one element in the array
to use as a pivot.

■ Partition the elements into
two sub-arrays

● Elements less than
or equal to pivot

● Elements greater
than pivot

● The elements don’t
have to be in order
in the subarrays,
they just have to be
in the right
subarray.

○ Conquer:
■ Recursively call Quicksort on

the two sub-arrays

Output:

Merge Sort Algorithm
The basic idea behind merge sort is to continuously divide a vector of elements into smaller and smaller subvectors, sorting
each half and merging them back together.

Given a vector, V, of n elements : V[0...n-1]

● If the vector has fewer than two elements, return.
● Else

○ Divide:
■ Divide the vector subvectors at the midpoint.

○ Conquer:
■ Recursively call mergeSort on each of the subvectors.

○ Combine:
■ Merge the two “sorted” subvectors back into a single sorted vector by taking a new element from either the first or

second subvector and choosing the smaller of the elements each time.

Unlike Quicksort where the divide step does a lot of work, for Merge Sort, the combine step does all the heavy lifting.

Note: Quick Sort does not have a “combine” step because everything is done in place. Merge sort utilizes temporary vectors.

Merging
The MVP of Merge Sort is the Merging function, which accepts a vector of the elements to merge, the
beginning index first subvector, the end of the first subvector, and the end of the second subvector.

 Steps in our Merging Algorithm:

1. Determine the size of the range to be merged and create a temporary vector to hold the
merged subvector elements.

2. Determine beginning indices of the first and second subvector
3. While the indices are not past their ranges, move smaller element of both subvectors into the

temporary vector.
4. Once one vector’s elements have all been copied, copy the remaining elements into the

temporary vector.
5. Finally, copy the sorted elements of the temporary vector into the original vector.

Merging
 Steps in our Merging Algorithm:

1. Determine the size of the range to be
merged and create a temporary
vector to hold the merged subvector
elements.

2. Determine beginning indices of the
first and second subvector.

3. While the indices are not past their
ranges, move smaller element of both
subvectors into the temporary vector.

4. Once one vector’s elements have all
been copied, copy the remaining
elements into the temporary vector.

5. Finally, copy the sorted elements of
the temporary vector into the original
vector.

Merging
 Steps in our Merging Algorithm:

1. Determine the size of the range to be
merged and create a temporary
vector to hold the merged subvector
elements.

2. Determine beginning indices of the
first and second subvector.

3. While the indices are not past their
ranges, move smaller element of both
subvectors into the temporary vector.

4. Once one vector’s elements have all
been copied, copy the remaining
elements into the temporary vector.

5. Finally, copy the sorted elements of
the temporary vector into the original
vector. https://commons.wikimedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

Recursive Implementation
of Merge Sort Algorithm
Given a vector, V, of n elements : V[0...n-1]

● If the vector has fewer than two
elements, return.

● Else
○ Divide:

■ Divide the vector
subvectors at the
midpoint.

○ Conquer:
■ Recursively call mergeSort

on each of the subvectors.
○ Combine:

■ Merge the two “sorted”
subvectors back into a
single sorted vector by
taking a new element
from either the first or
second subvector and
choosing the smaller of
the elements each time.

Output:

Just an FYI: Time Complexity of Sorting and Searching Algorithms

https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-complexities-cheat-sheet/

Binary Search (again)

In Chapter 6, we saw how to implement the Binary Search algorithm on a vector or array.

We learned that Binary Search is WAY faster than Linear Search, and when the number of
elements in a container is large enough, and you need to complete multiple searches, it is
much more efficient to sort the container (you can use Quick Sort or Merge Sort), and then
apply Binary Search!

We learned how to do it iteratively, now lets see how we can do it recursively.

Binary Search - Recursive Algorithm
Algorithm:

Given an array, A, of n elements : A[0...n-1]

1. Determine the beginning and end of the
search interval.

2. If there is no search interval, return -1
(value not in array)

3. Else
○ Calculate the middle point of search interval.
○ If middle element = value we are searching for,

return index.
○ If value > middle element, search continues in

right half of array.
○ If value < middle element, search continues in

left half of array.
4. Recursively send the next search interval.

Recursive Implementation
of Binary Search Algorithm
Given an array, A, of n elements :
A[0...n-1]

1. Determine the beginning and
end of the search interval.

2. If there is not search interval,
return -1 (value not in array)

3. Else
○ Calculate the middle point of

search interval.
○ If middle element = value we

are searching for, return
index.

○ If value > middle element,
search continues in right half
of array.

○ If value < middle element,
search continues in left half of
array.

4. Recursively send the next
search interval.

So….what is better: recursion or iteration?

Both...sorta
The efficiency of the method used depends on lots of things: the algorithm, the programming language, the compiler, etc.

Everything that is implemented recursively can be implemented iteratively, BUT it might not be as “elegant” or easily
understood.

Recursion generally uses more memory and takes longer since it continuously making calls to memory.

Examples of algorithms where iteration is more efficient than recursion:

● Fibonacci Numbers
● Factorial Calculation

But many times, the recursive and iterative methods are very similar in performance.

In conclusion:

● Use whichever method makes most sense to YOU.
● Recursion is strongly related to mathematical induction, which is used in proving the time complexity of algorithms

(Remember this in CSE 4310).
● “To iterate is human, to recurse is divine” - L. Peter Deutsch (Computer Scientist)

