
Chapter 10: Intro to Recursion
CSE 2010 Week 13

Code and Figures from : “C++ programming: an object-oriented approach” - Forouzan, Behrouz A, Gilberg, Richard, 2020.

Introduction
In previous chapters, we have learned to write functions to perform specific tasks.
When the task requires something to be done repeatedly, we have used iteration
(loops).

Now we are going to learn how to solve repetitive problems recursively.

Repetition vs Recursion

● In a simple iteration, we use a counter to repeat a task (chunk of code) n times.
● In recursion, the function does the task only once, but then it calls itself n-1

times to achieve the same goal.

So what exactly is recursion..
● Recursion is a powerful programming technique that allows us to break

up complex computational problems into smaller, more simple ones.
● Recursion even allows us to implement a solution in a way that mirrors

our natural (human) way of thinking about a problem.
● We can accomplish recursion by implementing functions that call

themselves to complete a task.
There are 2 key requirements to make sure that our recursive functions are successful:

1. Every recursive call must simplify the computation in some way (use smaller values
with each call).

2. There must be special cases to handle the simplest computations directly.
○ Each recursive function has a general case and base case.
○ A base case is the case that will terminate the recursion, while a general case is related to

calls that do something and continue the recursion.

Our first (simple) recursive problem - void recursion
Assume that we need to print n asterisks on a line and the value of n is known.
Let’s see how we can solve this iteratively and recursively.

The function is called a single time, and
the loop is controlled by reducing the
value of n with each iteration with n--.

The function is called n-1 times. In each call, except the
last where n=0, the function prints a single *.

What are our general and base cases?

Closer look at what’s going
on...

Another example - value returning recursion
Assume that we need to find the sum of all numbers from 0 to n, then return
the sum to the calling function.

In both programs, we are summing the numbers backward, from n to 0.
total = n + n-1 + n-2 + …+ 1 + 0

Base case: n<=0
General case: sum(n-1) + n

Let’s examine the flow of
the functions...

Void vs. Value Returning Recursive Functions
For void recursive functions, general cases are
continuously called until a base case is reached. The
general case does not need to hold any information.

For value-returning recursive functions, the general cases
are called until the base case is reached. Each general case
must hold some information until the call to the next step
is returned.

Recursion is one of those concepts that gets easier to
understand as you see more examples, so we’re going to

look over several recursive algorithms.

For now let’s look at Fibonacci Numbers
The Fibonacci sequence is a sequence of numbers in which each number is
the sum of the previous two numbers.

The first 10 terms of a sequence are:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55

The Fibonacci numbers problem has two base cases and a general case

Base Case: F(0) = 0 & F(1) = 1

General Case: F(n) = F(n-1) + F(n-2)

Recursive Implementation
to find the nth Fibonacci #
The Fibonacci numbers
problem has two base cases
and a general case

Base Case: F(0) = 0 & F(1) = 1

General Case: F(n) = F(n-1) +
F(n-2)

Output

Recursive Trace

